Opportunities and challenges for using networks of observational healthcare data for medical product safety surveillance

Jesse Berlin, ScD

VP, Epidemiology

Janssen Research & Development

A Johnson & Johnson Pharmaceutical Company

BASS Conference XIX Savannah, GA 6 November 2012

With many thanks to:

Patrick Ryan, Martijn Schuemie, and David Madigan on behalf of the OMOP research team

Observational Medical Outcomes Partnership

- Public-Private Research Partnership established to inform the appropriate use of observational healthcare databases for studying the effects of medical products:
 - Conducting methodological research to empirically evaluate the performance of various analytical methods on their ability to identify true associations and avoid false findings
 - Developing tools and capabilities for transforming, characterizing, and analyzing disparate data sources across the health care delivery spectrum
 - Establishing a shared resource so that the broader research community can collaboratively advance the science

A shared journey to learning about medical products

OMOP 2011/2012 Research Agenda

Drug-outcome pairs

	Positives	Negatives
Total	165	234
Myocardial Infarction	36	66
Upper GI Bleed	24	67
Acute Liver Injury	81	37
Acute Renal Failure	24	64

+ EU-ADR replication

- Improve HOI definitions
- Explore false positives

Observational data

• Type (timing)

- + OMOP Distributed Partners
- + EU-ADR network

Ground truth for OMOP 2011/2012 experiments

- Event listed in Boxed Warning or Warnings/Precautions section of active FDA structured product label
- Drug listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases"
- Literature review identified no powered studies with refuting evidence of effect

Criteria for negative controls:

- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases"
- Literature review identified no powered studies with evidence of potential positive association

Takeaways from insights about risk identification

- Performance of different methods
 - Self-controlled designs appear to consistently perform well
- Evaluating alternative HOI definitions
 - Broader definitions have better coverage and comparable performance to more specific definitions
- Performance across different signal sizes
 - A risk identification system should confidently discriminate positive effects with RR>2 from negative controls
- Data source heterogeneity
 - Substantial variation in estimates across sources suggest replication has value but may result in conflicting results
- Method parameter sensitivity
 - Each method has parameters that are expected to be more sensitive than others, but all parameters can substantially shift some drugoutcome estimates

An empirical approach to null hypothesis testing

Revisiting clopidogrel & GI bleed (Opatrny, 2008)

Agent	Cases (n = 4028)	Controls (n = 40 171)	Crude rate ratio	Adjusted rate ratio*	95% confidence interval
Antidepressant	is				
SSRI	335 (8.3%)	1780 (4.4%)	1.97	1.33	1.09, 1.62
TCA	262 (6.5%)	1764 (4.4%)	1.52	1.04	0.83, 1.30
Venlafaxine	56 (1.4%)	229 (0.6%)	2.48	1.85	1.34, 2.55
Anticoagulant					
Warfarin	281 (7.0%)	1130 (2.8%)	2.64	2 17	1.82, 2.59
Clopidogrel	160 (4.0%)	532 (1.3%)	3.16	2.07	1.66, 2.58

OMOP, 2012 (CC: 2000314, CCAE, GI Bleed)

Relative risk: 1.86, 95% CI: 1.79 – 1.93

Standard error: 0.02, p-value: <.001

Null distribution

Null distribution

Null distribution

Evaluating the null distribution?

- Current p-value calculation assumes that you have an unbiased estimator (which means confounding either doesn't exist or has been fully corrected for)
- Traditionally, we reject the null hypothesis at p<.05 and we assume this threshold will incorrectly reject the null hypothesis 5% of time. Does this hold true in observational studies?
- We can test this using our negative controls

Ground truth for OMOP 2011/2012 experiments

	Positive	Negative	
	controls	controls	otal
Acute Liver Injury	8 1	. 37	118
Acute Myocardial Infarction	35	66	102
Acute Renal Failure	2 4	64	88
Upper Gastrointestinal Bleeding	2 4	67	91
Total	165	234	399

Criteria for negative controls:

- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases"
- Literature review identified no evidence of potential positive association

Optimal method: SCCS:1931010, CCAE, GI Bleed

Recap

- Traditional p-values are based on a theoretical null distribution assuming an unbiased estimator, but that assumption rarely holds in our examples
- One can estimate the empirical null distribution using negative controls
- Many observational study results with traditional p < .05 fail to reject the empirical null: we cannot distinguish them from negative controls
- Applying optimal methods, tailored to the outcome and database, can provide estimates that reject the null hypothesis for some of our positive controls
- Using adjusted p-values will provide a more calibrated assessment of whether an observed estimate is different from 'no effect'

Beyond p-values: Computing the probability of a true association

We also have positive controls

But if AUC is small...

Revisiting clopidogrel & GI bleed (Opatrny, 2008)

Cases (n = 4028)	Controls (n = 40 171)	Crude rate ratio	Adjusted rate ratio*	95% confidence interval
s				
335 (8.3%)	1780 (4.4%)	1.97	1.33	1.09, 1.62
262 (6.5%)	1764 (4.4%)	1.52	1.04	0.83, 1.30
56 (1.4%)	229 (0.6%)	2.48	1.85	1.34, 2.55
281 (7.0%)	1130 (2.8%)	2.64	2 17	1.82, 2.59
160 (4.0%)	532 (1.3%)	3.16	2.07	1.66, 2.58
	(n = 4028) s 335 (8.3%) 262 (6.5%) 56 (1.4%) 281 (7.0%)	(n=4028) (n=40 171) s 335 (8.3%) 1780 (4.4%) 262 (6.5%) 1764 (4.4%) 56 (1.4%) 229 (0.6%) 281 (7.0%) 1130 (2.8%)	(n=4028) (n=40 171) ratio s 335 (8.3%) 1780 (4.4%) 1.97 262 (6.5%) 1764 (4.4%) 1.52 56 (1.4%) 229 (0.6%) 2.48 281 (7.0%) 1130 (2.8%) 2.64	(n=4028) (n=40 171) ratio ratio* s 335 (8.3%) 1780 (4.4%) 1.97 1.33 262 (6.5%) 1764 (4.4%) 1.52 1.04 56 (1.4%) 229 (0.6%) 2.48 1.85 281 (7.0%) 1130 (2.8%) 2.64 2.17

OMOP, 2012 (CC: 2000314, CCAE, GI Bleed)

Relative risk: 1.86, 95% CI: 1.79 – 1.93

Standard error: 0.02, p-value: <.001

Clopidogrel - GI Bleed

Method: CC-2000314, Source: CCAE, HOI: GI Bleed

Clopidogrel – GI Bleed

Method: CC-2000314, Source: CCAE, HOI: GI Bleed

Clopidogrel - GI Bleed

Method: SCCS-1931010, Source: CCAE, HOI: GI Bleed

Recap

- We have developed an empirical approach to quantifying the posterior probability of a true effect, given an observed estimate and prior beliefs
- Comparing the distribution of negative controls with the distribution of positive controls provides complementary information beyond the p-value
 - p<0.05 doesn't guarantee a true effect exists
 - p>0.05 doesn't guarantee no effect is present

Recap (continued)

- For each outcome, different methods may provide different weights of evidence
 - Some methods have greater discrimination and are more informative for interpreting a new estimate
 - Sometimes prior beliefs will drive the revised understanding
 - Other times, evidence will be sufficiently compelling that everyone, with different prior beliefs, should reach similar conclusions

Conclusions

- Calibration of p-values, using an empirical null distribution, in order to take into account the biases in database studies, may be feasible
- It is possible to calculate the posterior probability of an association, given a prior belief and the observed data